PHGN361 Exam 1: NAME

1. (a) Using the integral form of Gauss's Law, find the electric field due to a sphere of charge, with radius R and charge density $\rho=A r$, where A is a constant. Find the field both inside and outside the sphere. (b) Prove that your result is consistent with the differential form of Gauss's Law. Note $\nabla \cdot \vec{v}=\frac{1}{r^{2}} \frac{\partial}{\partial r}\left(r^{2} v_{r}\right)+\frac{1}{r \sin \theta} \frac{\partial}{\partial \theta}\left(\sin \theta v_{\theta}\right)+\frac{1}{r \sin \theta} \frac{\partial}{\partial \phi} v_{\phi}$
2. A spherical shell of radius R has constant surface charge density $\sigma=\sigma_{0} \sin (\theta+\phi)$. Write an INTEGRAL expression for the electric field at some arbitrary point $r>R$ due to this charge distribution.
3. Using separation of variables, derive an expression for the voltage between an infinite parallel plate capacitor with voltage V_{0} on the upper plate and grounded on the lower plate. The plates are separated by distance d. FOR CREDIT you need to justify all the steps starting from Laplace's equation. Please put your work on the back of this page.
