
Maxwell's	Equa-ons	to	wave	eqn	
•  Write	Maxwell’s	eqns	for	a	linear	medium	

	

•  Assume:		
–  Non-magne<c	medium	(μ	=	0)	
–  Linear	medium	D	=	ε0	ε	E	
–  Non-dispersive	medium	
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Take	the	curl:	
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EM	wave	equa-on	for	spa-ally	uniform	media	

•  Generalized	wave	equa<on	

–  If	medium	has	a	spa<ally-uniform	refrac<ve	index:		

	

–  If	the	medium	is	spa<ally	varying,	then	for	P	polarized	light	
(where	E	has	component	along	gradient),	then		

    

!
∇
!
∇⋅E( )− !∇⋅

!
∇( )E = − 1

c2

∂
∂t

ε ∂E
∂t

⎛
⎝⎜

⎞
⎠⎟
= − 1

c2 ε
∂2E
∂t2

   

!
∇⋅ εE( ) = ε

!
∇⋅E+ E ⋅

!
∇( )ε = 0

    

!
∇2E− 1

c2 ε
∂2E
∂t2 = 0

If	ε	is	<me-
independent	
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3D	EM	wave	propaga-on	

•  Note:		
–  All	linear	propaga<on	effects	are	included	in	LHS:	
diffrac<on,	interference,	focusing…	

–  With	plane	waves	transverse	deriva<ves	are	zero.		
•  More	general	examples:		

–  Gaussian	beams	(including	high-order)	
–  Waveguides	
–  Arbitrary	propaga<on	
–  Can	determine	discrete	solu<ons	to	linear	equa<on	(e.g.	
Gaussian	modes,	waveguide	modes),	then	express	fields	in	
terms	of	those	solu<ons.	
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General	3D	plane	wave	solu-on	

•  Assume	separable	func<on	

	
•  Solu<on	takes	the	form:	

	
–  Now	k-vector	can	point	in	arbitrary	direc<on	

•  With	this	solu<on	in	W.E.:	
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Grad	and	curl	of	3D	plane	waves	

•  Simple	trick:	

–  For	a	plane	wave,	

–  Similarly,	
	
•  Consequence:	since	

–  For	a	given	k	direc<on,	E	lies	in	a	plane	
–  E.g.	x	and	y	linear	polariza<on	for	a	wave	propaga<ng	in	z	
direc<on			
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∇⋅E = i kxEx + kyEy + kzEz( ) = i k ⋅E( )
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Class exercise 
•  Write an expression for the real E-field of a wave 

propagating in the x-z plane at an angle θx to the 
z-axis. The field is polarized in the y-direction and 
has an amplitude E0.  Make a sketch showing k 
and E relative to the coordinate system.  
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E r,t( ) = ŷE0 cos k xsinθ x + k zcosθ x −ωt( )
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		k = k

At t = 0 and r = 0 

E 0,0( ) = ŷE0
So draw E vector in +y direction 

θx 



Class exercise 
•  Write an expression for the complex E-field of a 

wave propagating in the y-z plane at an angle θy 
to the z-axis. The field is polarized in the y-z plane 
and the absolute phase is π/3, and has an 
amplitude E0.  Make a sketch showing k and E 
relative to the coordinate system.  
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E r,t( ) = E0 ŷcosθ y − ẑsinθ y( )ei k ysinθy+k zcosθy−ωt+π /3( )
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Here E0 is real, but we will 
often combine the 
absolute phase shift with 
the field strength, e.g.  

		E0 = A0e
iφ


