Maxwell's Equations to wave eqn

- Write Maxwell's eqns for a linear medium

$$
\begin{array}{ll}
\vec{\nabla} \cdot \mathbf{D}=\vec{\nabla} \cdot\left(\varepsilon_{0} \varepsilon \mathbf{E}\right)=0 & \vec{\nabla} \times \mathbf{E}=-\frac{\partial \mathbf{B}}{\partial t}=-\mu_{0} \mu \frac{\partial \mathbf{H}}{\partial t} \\
\vec{\nabla} \cdot \mathbf{B}=\vec{\nabla} \cdot\left(\mu_{0} \mu \mathbf{H}\right)=0 & \vec{\nabla} \times \mathbf{H}=\frac{\partial \mathbf{D}}{\partial t}=\varepsilon_{0} \varepsilon \frac{\partial \mathbf{E}}{\partial t}
\end{array}
$$

- Assume:
- Non-magnetic medium ($\mu=0$)
- Linear medium $D=\varepsilon_{0} \varepsilon \mathbf{E}$
- Non-dispersive medium

Take the curl:

$$
\begin{gathered}
\vec{\nabla} \times(\vec{\nabla} \times \mathbf{E})=-\mu_{0} \frac{\partial}{\partial t} \vec{\nabla} \times \mathbf{H}=-\mu_{0} \frac{\partial}{\partial t}\left(\varepsilon_{0} \varepsilon \frac{\partial \mathbf{E}}{\partial t}\right)=-\frac{1}{c^{2}} \frac{\partial}{\partial t}\left(\varepsilon \frac{\partial \mathbf{E}}{\partial t}\right) \\
\vec{\nabla} \times(\vec{\nabla} \times \mathbf{E})=\vec{\nabla}(\vec{\nabla} \cdot \mathbf{E})-(\vec{\nabla} \cdot \vec{\nabla}) \mathbf{E} \quad \text { BAC-CAB vector ID }
\end{gathered}
$$

EM wave equation for spatially uniform media

- Generalized wave equation

$$
\vec{\nabla}(\vec{\nabla} \cdot \mathbf{E})-(\vec{\nabla} \cdot \vec{\nabla}) \mathbf{E}=-\frac{1}{c^{2}} \frac{\partial}{\partial t}\left(\varepsilon \frac{\partial \mathbf{E}}{\partial t}\right)=-\frac{1}{c^{2}} \varepsilon \frac{\partial^{2} \mathbf{E}}{\partial t^{2}}
$$

If ε is time-
independent

- If medium has a spatially-uniform refractive index:

$$
\begin{array}{ll}
\vec{\nabla} \cdot(\varepsilon \mathbf{E})=\varepsilon \vec{\nabla} \cdot \mathbf{E}+(\mathbf{E} \cdot \vec{\nabla}) \varepsilon=0 \\
\vec{\nabla}^{2} \mathbf{E}-\frac{1}{c^{2}} \varepsilon \frac{\partial^{2} \mathbf{E}}{\partial t^{2}}=0 & \varepsilon=n^{2}
\end{array}
$$

- If the medium is spatially varying, then for P polarized light (where E has component along gradient), then

$$
\vec{\nabla}^{2} \mathbf{E}+\vec{\nabla}((\mathbf{E} \cdot \vec{\nabla}) \ln \varepsilon)-\frac{1}{c^{2}} \varepsilon \frac{\partial^{2} \mathbf{E}}{\partial t^{2}}=0
$$

3D EM wave propagation

$$
\nabla^{2} \mathbf{E}-\frac{n^{2}}{c^{2}} \frac{\partial^{2}}{\partial t^{2}} \mathbf{E}=\frac{\partial^{2}}{\partial z^{2}} \mathbf{E}+\nabla_{\perp}{ }^{2} \mathbf{E}-\frac{n^{2}}{c^{2}} \frac{\partial^{2}}{\partial t^{2}} \mathbf{E}=0
$$

- Note:

$$
\nabla_{\perp}^{2}=\partial_{x}^{2}+\partial_{y}^{2}
$$

$$
\nabla_{\perp}^{2}=\frac{1}{r} \partial_{r}\left(r \partial_{r}\right)+\frac{1}{r^{2}} \partial_{\phi}^{2}
$$

- All linear propagation effects are included in LHS: diffraction, interference, focusing...
- With plane waves transverse derivatives are zero.
- More general examples:
- Gaussian beams (including high-order)
- Waveguides
- Arbitrary propagation
- Can determine discrete solutions to linear equation (e.g. Gaussian modes, waveguide modes), then express fields in terms of those solutions.

General 3D plane wave solution

- Assume separable function

$$
\begin{aligned}
& \mathbf{E}(x, y, z, t) \sim f_{1}(x) f_{2}(y) f_{3}(z) g(t) \\
& \vec{\nabla}^{2} \mathbf{E}(z, t)=\frac{\partial^{2}}{\partial x^{2}} \mathbf{E}(z, t)+\frac{\partial^{2}}{\partial y^{2}} \mathbf{E}(z, t)+\frac{\partial^{2}}{\partial z^{2}} \mathbf{E}(z, t)=\frac{n^{2}}{c^{2}} \frac{\partial^{2}}{\partial t^{2}} \mathbf{E}(z, t)
\end{aligned}
$$

- Solution takes the form:

$$
\begin{aligned}
& \mathbf{E}(x, y, z, t)=\mathbf{E}_{0} \mathbf{e}^{i k_{x} x} e^{i k_{y} y} e^{i k_{z} z} e^{-i \omega t}=\mathbf{E}_{0} e^{i\left(k_{x} x+k_{y}, y+k_{z}\right)} e^{-i \omega t} \\
& \mathbf{E}(x, y, z, t)=\mathbf{E}_{0} e^{i\left(\mathbf{k}-\mathrm{m}^{-\omega t}\right)}
\end{aligned}
$$

- Now k -vector can point in arbitrary direction
- With this solution in W.E.:

$$
n^{2} \frac{\omega^{2}}{c^{2}}=k_{x}^{2}+k_{y}^{2}+k_{z}^{2}=\mathbf{k} \cdot \mathbf{k}
$$

Valid even in waveguides and resonators

Grad and curl of 3D plane waves

- Simple trick:

$$
\nabla \cdot \mathbf{E}=\partial_{x} E_{x}+\partial_{y} E_{y}+\partial_{z} E_{z}
$$

- For a plane wave, $\mathbf{E}(x, y, z, t)=\mathbf{E}_{\mathbf{0}} e^{i(\mathbf{k} \cdot \mathbf{r}-\omega t)}$

$$
\nabla \cdot \mathbf{E}=i\left(k_{x} E_{x}+k_{y} E_{y}+k_{z} E_{z}\right)=i(\mathbf{k} \cdot \mathbf{E})
$$

- Similarly,

$$
\nabla \times \mathbf{E}=i(\mathbf{k} \times \mathbf{E})
$$

- Consequence: since $\nabla \cdot \mathbf{E}=0, \quad \mathbf{k} \perp \mathbf{E}$
- For a given k direction, E lies in a plane
- E.g. x and y linear polarization for a wave propagating in z direction

Class exercise

- Write an expression for the real E-field of a wave propagating in the $x-z$ plane at an angle θ_{x} to the z-axis. The field is polarized in the y-direction and has an amplitude E_{0}. Make a sketch showing k and E relative to the coordinate system.

$$
\mathbf{E}(\mathbf{r}, t)=\hat{\mathbf{y}} E_{0} \cos \left(k x \sin \theta_{x}+k z \cos \theta_{x}-\omega t\right)
$$

$$
k=|\mathbf{k}|
$$

$$
\begin{aligned}
& \text { At } \mathrm{t}=0 \text { and } \mathbf{r}=0 \\
& \mathbf{E}(0,0)=\hat{\mathbf{y}} E_{0}
\end{aligned}
$$

So draw \mathbf{E} vector in $+\mathbf{y}$ direction

Class exercise

- Write an expression for the complex E-field of a wave propagating in the $y-z$ plane at angle θ_{y} to the z-axis. The field is polarized in the $y-z$ plane and the absolute phase is $\pi / 3$, and has an amplitude E_{0}. Make a sketch showing \boldsymbol{k} and E relative to the coordinate system.

$$
\mathbf{E}(\mathbf{r}, t)=E_{0}\left(\hat{\mathbf{y}} \cos \theta_{y}-\hat{\mathbf{z}} \sin \theta_{y}\right) \mathrm{e}^{i\left(k y \sin \theta_{y}+k z \cos \theta_{y}-\omega t+\pi / 3\right)}
$$

Here E_{0} is real, but we will often combine the absolute phase shift with the field strength, e.g.

$$
E_{0}=A_{0} e^{i \phi}
$$

