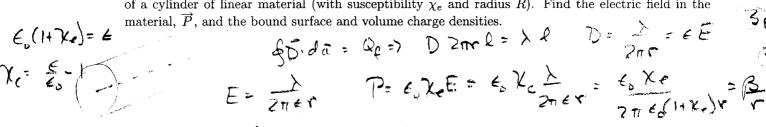
PHGN361 Exam 2:

NAME

1. A water molecule with dipole moment \vec{p}_0 pointing along the z axis is located at the origin. A nitrogen atom with polarizability α_0 is located on the z axis a distance D from the origin. Derive an expression for the dipole moment of the nitrogen molecule.

The introgen molecule.


$$\vec{E} = \frac{P_0}{4\pi \epsilon_0 r}, (Z \omega 9 \vec{r} + 5 \tilde{\omega} 9 \vec{6}) \Big|_{\theta=0} = \frac{2P_0}{4\pi \epsilon_0 r}, \hat{r}$$

$$\vec{P} = \alpha \vec{E} = \frac{Z P_0 \alpha}{4\pi \epsilon_0 r}, \hat{r}$$

2. Charge, distributed on a line with charge density λ_0 Coulombs per meter, is embedded at the center of a cylinder of linear material (with susceptibility χ_e and radius R). Find the electric field in the

- 3. Semi-infinite conducting planes $\phi = 0$ and $\phi = \pi/6$ are separated by an infinitesimal insulating gap as shown. Let $V(\phi = 0) = 0$ and $V(\phi = \pi/6) = 100$ Volts. Assume that V depends only on ϕ and use cylindrical coordinates (z axis at the gap and perpendicular to the page).

(a) Find both \vec{E} and V in the region between the plates.

(b) Now that the problem is solved, why can you say that the assumption that V depends only on ϕ was correct?

(e) Find the capacitance for two conducting plates each of $1 m^2$ area if the plates are in the geometry of the semi-infinite conducting planes. Assume that the field is that given in part (a) and that the plates are separated by a gap width of 4 mm.

Please put your work on the back page.