## Solutions to Linear Systems - Transformations - Inverse Matrices - Determinants

1. Find the interpolating polynomial $p(t)=a_{0}+a_{1} t+a_{2} t^{2}$ for the data $(1,12),(2,15),(3,16) .{ }^{1}$ Noting that the system is linear in the coefficient data, we seek to find $a_{0}, a_{1}$ and $a_{2}$ that satisfies,

$$
\begin{align*}
a_{0}+a_{1}(1)+a_{2}(1)^{2} & =12  \tag{1}\\
a_{0}+a_{1}(2)+a_{2}(2)^{2} & =15  \tag{2}\\
a_{0}+a_{1}(3)+a_{2}(3)^{2} & =16 \tag{3}
\end{align*}
$$

2. It is common to think about the equation $\mathbf{A x}=\mathbf{b}$ as a transformation of the vector $\mathbf{x}$ to a new vector $\mathbf{b}$ given by the matrix multiplication Ax. In this way every matrix can be thought of as a linear transformation applied to vectors. ${ }^{2}$ Probably the most common vector transformation is that of a rotation, which in $\mathbb{R}^{2}$ is given by:

$$
\mathbf{A}=\left[\begin{array}{rr}
\cos (\theta) & -\sin (\theta)  \tag{4}\\
\sin (\theta) & \cos (\theta)
\end{array}\right]
$$

Let $\mathbf{x}=\left[\begin{array}{ll}1 & 0\end{array}\right]^{\mathrm{T}}$. Describe or draw the results of the linear transformation $\mathbf{A x}$ for $\theta \in\left\{0, \frac{\pi}{4}, \frac{\pi}{2}, \frac{3 \pi}{4}, \pi, \frac{5 \pi}{4}, \frac{3 \pi}{2}, \frac{7 \pi}{4}, 2 \pi\right\}$. How would these results change if $\mathbf{A}=\left[\begin{array}{rr}\cos (\theta) & \sin (\theta) \\ -\sin (\theta) & \cos (\theta)\end{array}\right]$ ?
3. Given,

$$
\mathbf{A}=\left[\begin{array}{lll}
3 & 6 & 7 \\
0 & 2 & 1 \\
2 & 3 & 4
\end{array}\right]
$$

Determine $\mathbf{A}^{-1}$ via:
(a) Calculate $\operatorname{det}(\mathbf{A})$.
(b) The Gauss-Jordan Method (pg.317).
(c) The cofactor representation (Theorem 2 pg .318 ).
(d) Check your result by showing $\mathbf{A} \mathbf{A}^{-1}=\mathbf{I}$
4. Given the following for matrices:

$$
\mathbf{A}=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right], \quad \mathbf{B}=\left[\begin{array}{ll}
c & d \\
a & b
\end{array}\right], \quad \mathbf{C}=\left[\begin{array}{rr}
a & b \\
k c & k d
\end{array}\right], \quad \mathbf{D}=\left[\begin{array}{cc}
a+k c & b+k d \\
c & d
\end{array}\right]
$$

Calculate the determinants of the previous matrices. In each case, state the row operation used on $\mathbf{A}$ and describe how the row operation effects the determinant.
5. The determinant has a geometric interpretation. In $\mathbb{R}^{2}, \operatorname{det}(\mathbf{A})$ is the area of the parallelogram formed by the two vectors $\mathbf{a}_{1}, \mathbf{a}_{2}$, where $\mathbf{A}=\left[\mathbf{a}_{1} \mathbf{a}_{2}\right]$. In $\mathbb{R}^{3}, \operatorname{det}(\mathbf{A})$ is the volume of the parallelepiped formed by the three vectors $\mathbf{a}_{1}, \mathbf{a}_{2}, \mathbf{a}_{3}$, where $\mathbf{A}=\left[\mathbf{a}_{1} \mathbf{a}_{2} \mathbf{a}_{3}\right]$. For an illustration of these objects please see the PDF's posted on blackboard.

Using the concept of volume, explain why the determinant of a $3 \times 3$ matrix $\mathbf{A}$ is zero if and only if $\mathbf{A}$ is not invertable. ${ }^{3}$

[^0]
[^0]:    ${ }^{1}$ An interpolating polynomial for a data set is a polynomial whose graph passes through every point in the data set.
    ${ }^{2}$ See http://en.wikipedia.org/wiki/Transformation_matrix for more information.
    ${ }^{3}$ If the three vectors, $\mathbf{a}_{1}, \mathbf{a}_{2}, \mathbf{a}_{3}$, form a parrallelepiped with zero volume then what can be said about their geometric configuration? If a matrix is not invertible then what can be said about the linear independence of the rows or columns?

