Advanced Engineering Mathematics

Homework Six

Fourier Transform : Sine/Cosine Transforms, Common Transforms, Convolution and Green's Functions
Text: 11.7-11.9
Lecture Notes : 11-12
Lecture Slides: 5

Quote of Homework Six
Seems like everybody's out to test ya 'til they see your break
The Gorillaz - Dirty Harry (2005)
1. Fourier Transforms of Symmetric Functions

Let,

$$
\begin{array}{ll}
f_{c}(x)=\sqrt{\frac{2}{\pi}} \int_{0}^{\infty} \hat{f}(\omega) \cos (\omega x) d \omega & \hat{f}_{c}(\omega)=\sqrt{\frac{2}{\pi}} \int_{0}^{\infty} f(x) \cos (\omega x) d x \\
f_{s}(x)=\sqrt{\frac{2}{\pi}} \int_{0}^{\infty} \hat{f}(\omega) \sin (\omega x) d \omega & \hat{f}_{s}(\omega)=\sqrt{\frac{2}{\pi}} \int_{0}^{\infty} f(x) \sin (\omega x) d x \tag{1.2}
\end{array}
$$

be the definitions for the Fourier cosine and Fourier sine transform pairs, receptively.
1.1. Symmetry. Show that $f_{c}(x)$ and $\hat{f}_{c}(\omega)$ are even functions and that $f_{s}(x)$ and $\hat{f}_{s}(\omega)$ are odd functions. ${ }^{1}$
1.2. Derivation from Fourier Transform. Recall the complex Fourier transform,

$$
\begin{equation*}
f(x)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} \hat{f}(\omega) e^{i \omega x} d \omega, \quad \hat{f}(\omega)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} f(x) e^{-i \omega x} d x \tag{1.3}
\end{equation*}
$$

Show that if we assume that $f(x)$ is an even function then (1.3) defines the transform pair given by (1.1). Also, show that if $f(x)$ is an odd function then (1.3) defines the transform pair given by (1.2). ${ }^{2}$
1.3. Even and Odd Finite Pulses. Given,

$$
f(x)=\left\{\begin{array}{cc}
A, & 0<x<a \tag{1.4}\\
0, & \text { otherwise }
\end{array}, \quad A, a \in \mathbb{R}^{+}\right.
$$

Plot the even and odd extensions of f.
1.4. Symmetric Transforms. Find the Fourier cosine and sine transforms of f.
1.5. Integral Trick. Using the Fourier cosine transform show that $\int_{-\infty}^{\infty} \frac{\sin (\pi \omega)}{\pi \omega} d \omega=1$.

2. Sine and Cosine Transforms

Calculate the following Fourier sine/cosine transformations. Include any domain restrictions.
2.1. Forward Cosine Transform. $\mathfrak{F}_{c}\left(e^{-a x}\right), a \in \mathbb{R}^{+}$
2.2. Inverse Cosine Transform. $\mathfrak{F}_{c}^{-1}\left(\frac{1}{1+\omega^{2}}\right)$
2.3. Forward Sine Transform. $\mathfrak{F}_{s}\left(e^{-a x}\right), a \in \mathbb{R}^{+}$
2.4. Inverse Sine Transform. $\mathfrak{F}_{s}^{-1}\left(\sqrt{\frac{2}{\pi}} \frac{\omega}{a^{2}+\omega^{2}}\right), a \in \mathbb{R}^{+}$

[^0]Calculate the following transforms. Include any domain restrictions.
3.1. Dirac-Delta. $\mathfrak{F}\{f\}$ where $f(x)=\delta\left(x-x_{0}\right), x_{0} \in \mathbb{R} .^{3}$
3.2. Decaying Exponential Function. $\mathfrak{F}\{f\}$ where $f(x)=e^{-k_{0}|x|}, k_{0} \in \mathbb{R}^{+}$.
3.3. Even Combination of Dirac-Deltas. $\mathfrak{F}^{-1}\{\hat{f}\}$ where $\hat{f}(\omega)=\frac{1}{2}\left(\delta\left(\omega+\omega_{0}\right)+\delta\left(\omega-\omega_{0}\right)\right), \omega_{0} \in \mathbb{R}$.
3.4. Odd Combination of Dirac-Deltas. $\mathfrak{F}^{-1}\{\hat{f}\}$ where $\hat{f}(\omega)=\frac{1}{2}\left(\delta\left(\omega+\omega_{0}\right)-\delta\left(\omega-\omega_{0}\right)\right), \omega_{0} \in \mathbb{R}$.
3.5. Horizontal Shifts. Find $\hat{f}(\omega)$ where $f(x+c), c \in \mathbb{R}$.

4. Convolution Integrals

The convolution h of two functions f and g is defined as ${ }^{4}$,

$$
\begin{equation*}
h(x)=(f * g)(x)=\int_{-\infty}^{\infty} f(p) g(x-p) d p=\int_{-\infty}^{\infty} f(x-p) g(p) d p . \tag{4.1}
\end{equation*}
$$

4.1. Fourier Transforms of Convolutions. Show that $\mathfrak{F}\{f * g\}=\sqrt{2 \pi} \mathfrak{F}\{f\} \mathfrak{F}\{g\} .{ }^{5}$
4.2. Simple Convolution. Find the convolution $h(x)=(f * g)(x)$ where $f(x)=\delta\left(x-x_{0}\right)$ and $g(x)=e^{-x}$.

5. Simple Green's Functions

Given the ODE,

$$
\begin{equation*}
y^{\prime}+y=f(x), \quad-\infty<x<\infty \tag{5.1}
\end{equation*}
$$

5.1. Delta Forcing. Calculate the frequency response, or what is sometimes called the steady-state transfer function, associated with (5.1). ${ }^{6}$
5.2. Inversion. Calculate the Green's function associated with (5.1). ${ }^{7}$
5.3. Solutions as Convolution Integrals. Using convolution find the steady-state solution to the (5.1). ${ }^{8}$

[^1]
[^0]: ${ }^{1}$ Thus, if an input function has an even or odd symmetry then the transformed function shares the same symmetry.
 ${ }^{2}$ Thus, if an input function has symmetry then the Fourier transform is real-valued and reduced to a since or cosine transform.

[^1]: ${ }^{3}$ Here the δ is the so-called Dirac, or continuous, delta function. This isn't a function in the true sense of the term but instead what is called a generalized function. The details are unimportant and in this case we care only that this Dirac-delta function has the property $\int_{-\infty}^{\infty} \delta\left(x-x_{0}\right) f(x) d x=$ $f\left(x_{0}\right)$. For more information on this matter consider http://en.wikipedia.org/wiki/Dirac_delta_function. To drive home that this function is strange, let me spoil the punch-line. The sampling function $f(x)=\operatorname{sinc}(a x)$ can be used as a definition for the Delta function as $a \rightarrow 0$. So can a bell-curve probability distribution. Yikes!
 ${ }^{4}$ Here wee keep the same notation as Kreysig pg. 523
 ${ }^{5}$ The point here is that while the Fourier transform of a linear combination is the linear combination of Fourier transforms, the Fourier transform of a product is a convolution integral. Well, at least that's something.
 ${ }^{6}$ This function is a representation of how the system responds to the most primitive force, $\delta(x)$, in the Fourier domain.
 ${ }^{7}$ The Green's function is just the inverse of the frequency response function and is a representation of how the system would like to respond to the primitive, $\delta(x)$, force in the original domain.
 ${ }^{8}$ The key point of these three steps is that, if you can determine how a linear differential equation responds to simple forcing then the general solution can be represented in terms of a convolution integral containing the Green's function. This gives us a general method for solving inhomogeneous differential equations. However, finding the Green's function for a $D E$ is generally nontrivial.

