
Advanced Engineering Mathematics Homework Six

Fourier Transform : Sine/Cosine Transforms, Common Transforms, Convolution and Green’s Functions

Text: 11.7-11.9 Lecture Notes : 11-12 Lecture Slides: 5

Quote of Homework Six

Seems like everybody’s out to test ya ’til they see your break

The Gorillaz - Dirty Harry (2005)

1. Fourier Transforms of Symmetric Functions

Let,

fc(x) =

r
2

π

Z ∞
0

f̂(ω) cos(ωx)dω f̂c(ω) =

r
2

π

Z ∞
0

f(x) cos(ωx)dx(1.1)

fs(x) =

r
2

π

Z ∞
0

f̂(ω) sin(ωx)dω f̂s(ω) =

r
2

π

Z ∞
0

f(x) sin(ωx)dx,(1.2)

be the definitions for the Fourier cosine and Fourier sine transform pairs, receptively.

1.1. Symmetry. Show that fc(x) and f̂c(ω) are even functions and that fs(x) and f̂s(ω) are odd functions.1

1.2. Derivation from Fourier Transform. Recall the complex Fourier transform,

f(x) =
1√
2π

Z ∞
−∞

f̂(ω)eiωxdω, f̂(ω) =
1√
2π

Z ∞
−∞

f(x)e−iωxdx.(1.3)

Show that if we assume that f(x) is an even function then (1.3) defines the transform pair given by (1.1). Also, show that if f(x) is an odd

function then (1.3) defines the transform pair given by (1.2). 2

1.3. Even and Odd Finite Pulses. Given,

(1.4) f(x) =

(
A, 0 < x < a

0, otherwise
, A, a ∈ R+.

Plot the even and odd extensions of f .

1.4. Symmetric Transforms. Find the Fourier cosine and sine transforms of f .

1.5. Integral Trick. Using the Fourier cosine transform show that

Z ∞
−∞

sin(πω)

πω
dω = 1.

2. Sine and Cosine Transforms

Calculate the following Fourier sine/cosine transformations. Include any domain restrictions.

2.1. Forward Cosine Transform. Fc(e−ax), a ∈ R+

2.2. Inverse Cosine Transform. F−1
c

„
1

1 + ω2

«
2.3. Forward Sine Transform. Fs(e−ax), a ∈ R+

2.4. Inverse Sine Transform. F−1
s

 r
2

π

ω

a2 + ω2

!
, a ∈ R+

1Thus, if an input function has an even or odd symmetry then the transformed function shares the same symmetry.
2Thus, if an input function has symmetry then the Fourier transform is real-valued and reduced to a since or cosine transform.
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3. Fourier Transforms

Calculate the following transforms. Include any domain restrictions.

3.1. Dirac-Delta. F {f} where f(x) = δ(x− x0), x0 ∈ R.3

3.2. Decaying Exponential Function. F {f} where f(x) = e−k0|x|, k0 ∈ R+.

3.3. Even Combination of Dirac-Deltas. F−1
n
f̂
o

where f̂(ω) =
1

2
(δ(ω + ω0) + δ(ω − ω0)) , ω0 ∈ R.

3.4. Odd Combination of Dirac-Deltas. F−1
n
f̂
o

where f̂(ω) =
1

2
(δ(ω + ω0)− δ(ω − ω0)) , ω0 ∈ R.

3.5. Horizontal Shifts. Find f̂(ω) where f(x+ c), c ∈ R.

4. Convolution Integrals

The convolution h of two functions f and g is defined as4,

(4.1) h(x) = (f ∗ g)(x) =

Z ∞
−∞

f(p)g(x− p)dp =

Z ∞
−∞

f(x− p)g(p)dp.

4.1. Fourier Transforms of Convolutions. Show that F {f ∗ g} =
√

2πF {f}F {g}. 5

4.2. Simple Convolution. Find the convolution h(x) = (f ∗ g)(x) where f(x) = δ(x− x0) and g(x) = e−x.

5. Simple Green’s Functions

Given the ODE,

(5.1) y′ + y = f(x), −∞ < x <∞.

5.1. Delta Forcing. Calculate the frequency response, or what is sometimes called the steady-state transfer function, associated with

(5.1). 6

5.2. Inversion. Calculate the Green’s function associated with (5.1). 7

5.3. Solutions as Convolution Integrals. Using convolution find the steady-state solution to the (5.1).8

3Here the δ is the so-called Dirac, or continuous, delta function. This isn’t a function in the true sense of the term but instead what is called a

generalized function. The details are unimportant and in this case we care only that this Dirac-delta function has the property

Z ∞
−∞

δ(x−x0)f(x)dx =

f(x0). For more information on this matter consider http://en.wikipedia.org/wiki/Dirac_delta_function. To drive home that this function is

strange, let me spoil the punch-line. The sampling function f(x) = sinc(ax) can be used as a definition for the Delta function as a → 0. So can a

bell-curve probability distribution. Yikes!
4Here wee keep the same notation as Kreysig pg. 523
5The point here is that while the Fourier transform of a linear combination is the linear combination of Fourier transforms, the Fourier transform of

a product is a convolution integral. Well, at least that’s something.
6This function is a representation of how the system responds to the most primitive force, δ(x), in the Fourier domain.
7The Green’s function is just the inverse of the frequency response function and is a representation of how the system would like to respond to the

primitive, δ(x), force in the original domain.
8The key point of these three steps is that, if you can determine how a linear differential equation responds to simple forcing then the general

solution can be represented in terms of a convolution integral containing the Green’s function. This gives us a general method for solving inhomogeneous

differential equations. However, finding the Green’s function for a DE is generally nontrivial.

http://en.wikipedia.org/wiki/Dirac_delta_function
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