6.5.11 (10 pts) For each natural numberk, let A_{k} be a set, and for each natural number n, let $f_{n}: A_{n} \rightarrow A_{n+1}$. For example, $f_{1}: A_{1} \rightarrow A_{2}, f_{2}: A_{2} \rightarrow A_{3}, f_{3}: A_{3} \rightarrow A_{4}$, and so on.
Use mathematical induction to prove that for each natural number n with $n \geq 2$, if $f_{1}, f_{2}, \ldots, f_{n}$ are all bijections, then $f_{n} \circ f_{n-1} \circ \cdots \circ f_{2} \circ f_{1}$ is a bijection and

$$
\left(f_{n} \circ f_{n-1} \circ \cdots \circ f_{2} \circ f_{1}\right)^{-1}=f_{1}^{-1} \circ f_{2}^{-1} \circ \cdots \circ f_{n-1}^{-1} \circ f_{n}^{-1}
$$

Proof. Using a proof by induction, we first note that by theorem ${ }^{1}$ presented in the text if f_{1}, f_{2} are bijections then $f_{2} \circ f_{1}$ is also a bijection and

$$
\left(f_{2} \circ f_{1}\right)^{-1}=f_{1}^{-1} \circ f_{2}^{-1}
$$

Now assume that

$$
\left(f_{k} \circ f_{k-1} \circ \cdots \circ f_{2} \circ f_{1}\right)^{-1}=f_{1}^{-1} \circ f_{2}^{-1} \circ \cdots \circ f_{k-1}^{-1} \circ f_{k}^{-1}
$$

and consider,

$$
\left(f_{k+1} \circ f_{k} \circ f_{k-1} \circ \cdots \circ f_{2} \circ f_{1}\right)=(\underbrace{f_{k+1}}_{g} \circ \underbrace{f_{k} \circ f_{k-1} \circ \cdots \circ f_{2} \circ f_{1}}_{h})=g \circ h
$$

From our inductive step, we know h is a bijection and that

$$
h^{-1}=f_{1}^{-1} \circ f_{2}^{-1} \circ \cdots \circ f_{k-1}^{-1} \circ f_{k}^{-1}
$$

Then, from our basis step, we see that $g \circ h$ is a bijection and that

$$
(g \circ h)^{-1}=h^{-1} \circ g^{-1}=f_{1}^{-1} \circ f_{2}^{-1} \circ \cdots \circ f_{k}^{-1} \circ f_{k+1}^{-1}
$$

Thus, for each natural number n with $n \geq 2$, if $f_{1}, f_{2}, \ldots, f_{n}$ are all bijections, then $f_{n} \circ$ $f_{n-1} \circ \cdots \circ f_{2} \circ f_{1}$ is a bijection and

$$
\left(f_{n} \circ f_{n-1} \circ \cdots \circ f_{2} \circ f_{1}\right)^{-1}=f_{1}^{-1} \circ f_{2}^{-1} \circ \cdots \circ f_{n-1}^{-1} \circ f_{n}^{-1}
$$

[^0]6.6.8 (10 pts) Let $f: S \rightarrow T$ and let A and B be subsets of S. Prove or disprove each of the following:
a) If $A \subseteq B$ then $f(A) \subseteq f(B)$.

Proof. Let $f(x) \in f(A) \Rightarrow x \in A \Rightarrow x \in B \Rightarrow f(x) \in f(B)$. Thus, $f(A) \subseteq f(B)$.
b) If $f(A) \subseteq f(B)$ then $A \subseteq B$.

This assertion is false. As a counterexample, consider, for $f: \mathbb{R} \rightarrow \mathbb{R}$, with $f(x)=x^{2}$ and with $A=[-1,1]$ and $B=[0,2]$, we see

$$
f(A)=[0,1] \subseteq[0,4]=f(B) \text { yet } A \nsubseteq B
$$

[^0]: ${ }^{1}$ Theorem 6.32: Let $f: A \rightarrow B$ and $g: B \rightarrow C$ be bijections. Then $g \circ f$ is a bijection and $(g \circ f)^{-1}=f^{-1} \circ g^{-1}$

