Reading: G 10.1 (10.2) Monday: G10.3

Potentials
In electrostatics, you used "voltage" (V, or ϕ in most advanced books), sometimes called the scalar potential. Also, there was \vec{A}, the vector potential.

$$
W=\int_{\eta}^{\int} \vec{F} \cdot d \vec{l}=\int_{\substack{\text { force just } \\ \text { from } \vec{E} \cdot \text { field. }}}^{q_{i} \vec{E} \cdot d \vec{l}=q \int \vec{E} \cdot d \vec{l}=-q \Delta V}
$$

Relationship between V and energy. Let's expand:
Why did we say $\vec{E}=-\vec{\nabla} V$?

$$
\begin{aligned}
& \vec{\nabla} \times \vec{E}=\phi\left\{\begin{array}{l}
\text { in ecstatics } V
\end{array}\right. \\
& \vec{\sigma}_{x}(\vec{b})=\phi \text { for any } f . \\
& \vec{\nabla} \times \vec{E}=-\frac{\partial \vec{B}}{\partial t} \quad \vec{B}=\vec{\nabla} \times \vec{A} \\
& \text { Why? } \vec{\nabla} \cdot \vec{B}=\phi\{\sqrt{ }\} \\
& \text { and } \vec{\nabla} \cdot(\vec{B} \times \vec{F})=\phi \\
& \text { any vector field }
\end{aligned}
$$

$$
\begin{array}{ll}
\vec{\nabla} \times \vec{E}=-\frac{\partial \vec{D}}{\partial t} & \vec{\nabla} \cdot \vec{B}=\phi \\
\vec{\nabla} \times \vec{E}=-\frac{\partial}{\partial t}(\vec{\nabla} \times \vec{A}) \quad & \Rightarrow \text { we can still } \\
& =\vec{\nabla}=\vec{\nabla} \times\left(-\frac{\partial \vec{A}}{\partial t}\right) \\
\Rightarrow \vec{\nabla} \times\left(\vec{E}+\frac{\partial \vec{A}}{\partial t}\right)=\phi \\
\underbrace{}_{\text {You can write }} \\
\vec{E}+\frac{\partial \vec{A}}{\partial t}=-\vec{\nabla} V \\
\vec{E} \text { can be writ as } \vec{\nabla} V \text { or }-\vec{\nabla} V \\
\vec{E}=-\vec{\nabla} V-\frac{\partial \vec{A}}{\partial t} ; \vec{B}=\vec{\nabla} \times \vec{A}
\end{array}
$$

Aug these definitions into all of Maxwell's ag kc.
(i) $\vec{\nabla} \cdot \vec{E}=\rho / \epsilon_{0}$
(iii) $\vec{V} \times \vec{E}=-\frac{\partial \vec{B}}{\partial t}$
(ii) $\vec{\nabla} \cdot \vec{B}=\phi$
(i) $\bar{\nabla} \cdot\left(-\vec{\nabla} v-\frac{\partial \vec{A}}{\partial t}\right)=\rho / \epsilon_{0}=-\nabla^{2} v-\frac{\partial}{\partial t}(\vec{D} \cdot \vec{A})=\rho / \epsilon_{0}$
(ii) $\dot{\nabla} \cdot(\vec{D} \times \vec{A})=\varnothing$, trivial
(iii) $\stackrel{\nabla}{\nabla} \times\left(-\bar{z} \hat{v}-\frac{\partial \vec{A}}{\partial t}\right)=-\frac{\partial}{\partial t}(\vec{\nabla} \times \vec{A})$, trivial
(iv) $\vec{\nabla} \times(\vec{\nabla} \times \vec{A})=\mu_{0} \vec{J}+\mu_{0} t_{0} \frac{\partial}{\partial t}\left(-\vec{\nabla} v-\frac{\partial \vec{A}}{\partial t}\right)$

$$
\vec{\nabla}(\vec{\nabla} \cdot \vec{A})-\nabla^{2} \vec{A}=\mu_{0} J-\mu_{0} \epsilon_{0} \frac{\partial}{\partial t}(\sigma v)-\mu_{0} t_{0} \frac{\partial^{2} \vec{A}}{\partial t^{2}}
$$

If you us $\vec{E}=-\vec{\nabla} V-\frac{\partial \vec{A}}{\partial t} ; \vec{B}=\vec{V} \times \vec{A}$ are equivalent to Maxwells equs, except you have a little more freedom.. too much.

Gange Transformations
Let's say that

$$
\vec{A}^{\prime}=\vec{A}+\vec{\alpha} ; V^{\prime}=V ; \beta
$$

Can I get an $\vec{\alpha}, \beta$ such that \vec{E} and $\overrightarrow{\vec{b}}$ are unchanged?

$$
\begin{aligned}
& \vec{\nabla} \times \vec{A}^{\prime}=\vec{\nabla} \times \vec{A}+\vec{\nabla} \times \vec{\alpha} . \\
& \text { If } \vec{\alpha}=\vec{\nabla} \lambda_{\hat{N}} \text {.any scalar function } \Rightarrow \vec{\nabla} \times \vec{A}^{\prime}=\vec{\nabla} \times \vec{A}
\end{aligned}
$$

we need \vec{E} to not change...

$$
\begin{aligned}
& -\vec{v} v^{\prime}-\frac{\partial \vec{A}^{\prime}}{\partial t}=-\vec{\nabla} v-\frac{\partial \vec{A}}{\partial t} \quad\left\{v^{\prime}=v+\beta\right. \\
& -\vec{\nabla}(v+\beta)-\frac{\partial}{\partial t}(\vec{A}+\vec{\nabla} \lambda)=-\dot{\nabla} v-\frac{\partial \vec{A}}{\partial t} \\
& -\vec{v} W-\vec{\nabla} \beta-\frac{\partial \vec{H}}{\partial t}-\frac{\partial}{\partial t} \vec{b} \lambda=-\vec{z} / V-\frac{\partial k}{\partial t} \\
& \vec{\nabla} \beta+\frac{\partial}{\partial t} \vec{v} \lambda=\phi \\
& \vec{\nabla}\left(\beta+\frac{\partial \lambda}{\partial t}\right)=\phi \\
& \beta=-\frac{\partial \lambda}{\partial t}+f(t) \\
& \text { Let's absorb } f(t) \rightarrow \frac{\partial \lambda}{\partial t}
\end{aligned}
$$

You can change "your potentials by using the following "gauge transformation"

$$
V^{\prime}=V-\frac{\partial \lambda}{\partial t} ; \quad \vec{A}^{\prime}=\vec{A}+\vec{D} \lambda
$$

Title: Jul 21-6:21 PM (4 of 6)

Some popular ganger:
Coloumb Gauge: Simplify (i) from last pare by setting $\dot{\sigma} \cdot \vec{K}^{\prime}=\varnothing$
(i) $-\nabla^{2} v=p / \sigma_{0}$
(iv)

$$
\begin{aligned}
& \vec{\nabla}(\vec{\nabla} \cdot \vec{A})^{\phi}-\nabla^{2} \vec{A}=\mu_{0} \vec{J}-\mu_{0} \epsilon_{0} \frac{\partial}{\partial t}(\partial V)-\mu_{0} t_{0} \frac{\partial^{2} \vec{A}}{\partial t^{2}} \\
& -\nabla^{2} \vec{A}+\mu_{0} t_{0} \frac{\partial^{2} \vec{A}}{\partial t^{2}}+\mu_{0} t_{0} \frac{\partial}{\partial t}(\vec{\sigma} V)=\mu_{0} \vec{J}
\end{aligned}
$$

Lorentz gauge:
Pick λ sit. $\vec{\nabla} \cdot \vec{A}=-\epsilon_{0} \mu_{0} \frac{\partial V}{\partial t}$
Plug this into Maxwell's equis (i), (iv) from prev. page, see what you get.

$$
\begin{aligned}
& \left(\nabla^{2}-\mu_{0} \epsilon_{0} \frac{\partial^{2}}{\partial t^{2}}\right) \vec{A}=-\mu_{0} \vec{J} \\
& \left(v^{2}-\mu_{0} \epsilon_{0} \frac{\partial^{2}}{\partial t^{2}}\right) v=-\frac{\rho}{\epsilon_{0}} \\
& \nabla^{2} \vec{A}=-\mu_{0} J \\
& \left.\nabla^{2} v=-\rho / \epsilon_{0}\right\} \partial_{0} \partial^{\nu} A^{n}=J^{n}
\end{aligned}
$$

General solution
(lorentz gouge)

$$
\hat{t}_{r}=t-\frac{r}{c} ; r=\left|\vec{r}-\vec{r}^{\prime}\right|
$$

In electrostatics,

You might think

$$
\vec{E}(\vec{r}, t)=\frac{1}{4 \pi} \int \frac{\rho\left(\vec{r}^{\prime}, t_{r}\right) \hat{r}}{r^{2}} d \tau^{\prime}
$$

wrong...

$$
\begin{aligned}
& \vec{E}=\frac{1}{4 r^{\prime} t_{0}} \int_{\text {and }}^{\text {ace }}\left[\frac{\rho\left(\vec{r}^{\prime}, t_{r}\right) \hat{r}}{r^{2}}+\frac{\dot{\rho}\left(\vec{r}^{\prime} ; t_{r}\right) \hat{r}}{c r}-\frac{\dot{\vec{J}}\left(\vec{r}^{\prime}, t_{r}\right)}{r^{2} r}\right] d \tau^{\prime} \\
& \vec{B}=\frac{\mu_{0}}{4 \pi} \int_{\text {ald }}\left[\frac{\vec{J}\left(\vec{r}^{\prime}, t_{r}\right)}{r^{2}}+\frac{\dot{\vec{J}}\left(\vec{r}^{\prime}, t_{r}\right)}{c r}\right] \times \hat{r} d \tau^{\prime}
\end{aligned}
$$

